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ABSTRACT

This work takes some of the major features of ceramic composite armour
failure, viz. fracture conoid formation, dishing failure of thin backing

F plates, perforation failure of thick backing plates, and projectile erosion,
! and by lumping masses to treat material acceleration simple models are
developed which allow computations on ceramic targets with both thin and
thick metallic backings. Two computer programs for these problems, CEP
and ECS, are documented, and calculations compared with a broad range of
empirical data and also used to discuss aspects of the interaction of
penetrators with ceramic composite armours. The good correlation of
models with experiment demonstrates the usefulness of the present
1 approach for studying ceramic composite armour defeat.

Accesion For
L 2

NTIS CRA&! I~
DTIC TaB a

Ung o, g a
Justit.ct o
By .. ..
Ditib.vo
S

—————— ]

A gty Codes

p——

Dist

e . ———

" Ava .y—‘d‘( or
SireCial

AL | 89 11 . U334




Published by DSTO Materials Research Laboratory
Cordite Avenue, Maribyrnong, Victoria 3032, Australia
Telephone: (03) 319 3887

Fax: (03) 318 4536

© Commonwealth of Australia 1989
* AR No. 005-713

Approved for public release




- -

0
“;"-

CONTENTS

INTRODUCTION

APPROXIMATE NUMERICAL CONSIDERATIONS

MODEL DEVELOPMENT

SELECTION OF MATERIAL STRENGTH DATA

COMPARISON WITH EMPIRICAL DATA

DISCUSSION

CONCLUSIONS

REFERENCES

APPENDIX 1 CEP - Computer Program for Thin Backing Ceramic
Composite Targets

APPENDIX 2 ECS - Program for Ceramic Perforation when
Backed by a Thick Plate

Page

13

14

18

19

19



A BASIS FOR MODELLING CERAMIC COMPOSITE
! ARMOUR DEFEAT

1. INTRODUCTION

The development of ceramic composite armours rests soundly on the basis of the work of
Wilkins et al. [1-3] who developed the commonly used configuration of ceramic tiles
supported by a thin ductile backing material. Wilkins used the HEMP finite difference
computer code to simulate ballistic experiments, and although a complete description of an
’f event through to perforation was not possible, he was able to isolate many of the important

features of the penetration problem. The ceramic tile was seen to load the projectile nose
causing attrition and deceleration, at a rate governed by the yield strength of the projectile
j material. The ceramic fractured in the form of a conoid followed by tensile failure in the
“ ceramic initiating at the ceramic/backing plate interface, opposite the impact location.
Wilkins proposed that delaying the initiation of tensile failure would substantially increase
the performance of ceramic composite armours by allowing more projectile erosion.

There has been substantial interest recently in empirical studies of the failure of
. ceramic armour. Mayseless et al. [4] present data for targets with a range of thin backing
plate materials, and also for cases where no backing is used. The backing is shown to
contribute substantially to the achievement of good ballistic performance in the ceramic.
Rosenberg et al. [5, 6] have used effectively semi-infinite backings and measured residual
penetration depths into these as a guide to ceramic performance. They conclude that
ballistic performance increases with increase in effective compressive strength of the
ceramic,

Studies by Nicol et al. [7] of the energy distribution in the defeat of glass and
ceramic tiles backed by thin aluminium plates, using small calibre armour piercing
projectiles, demonstrated that a negligible proportion of the projectile’s kinetic energy went
into fracture of the ceramic. The major energy dissipating mechanisms were identified as
plastic deformation of both the backing plate and the penetrator and as kinetic energy
1 picked up by the ceramic debris and the supporting structure. The backing plates for
f ceramic targets were not defeated by perforation, but rather bulged and necked to failure
I by ductile fracture. In the case of glass tiles the projectile core was not deformed and
{ defeated the backing plate by perforation.

While cone cracking has been studied extensively [8-12] in semi-infinite glass
media, it has been studied less extensively in finite thickness bodies [13]. The ideal cone
angle depends on the elastic properties of both indenter and brittle material (9], but for
quasi-static ball indentations is generally around 68° to the axis of indentation. Under
controlled dynamic conditions the crack travels through a time varying stress field and
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hence significant, but predictable, departures from the ideal angle are observed [9].
Ballistic impact tends to be an overload situation with little control and therefore it is
extremely difficult to study the sequence of cracking. Nevertheless the cone shaped zone
of damage simulated by Wilkins [3] is similar to observed fracture conoids and at similar
angles to cone cracks seen in quasi-static indentation of glass plates. Hornemann et al.
[14] have used high speed photography to study crack propagation in the ballistic impact of
glass plates. They observe not only the propagation of cracks from the impact site but also
the nucleation and growth of cracks in the stress field ahead of the damage front. In the
photographs of impacted glass of Pavel et al. [15] the fragmented glass debris is ejected at
a gimilar velocity to the rate of penetration by the projectile.

The experimental and computational studies leave many gaps in our
understanding of the perforation of ceramics. This work presents approximate model
solutions which allow computations on ballistic impacts into ceramic composite armours,
with both thick backing and thin backing, relative to the projectile calibre. The cone crack
formation, ceramic and projectile erosion and backing deformation as well as the inertial
response of the system components are realistically modelled. The principal observed
features associated with trends in ballistic performance with changes in ceramic and
backing thickness, ceramic and backing materials, projectile type and impact velocity are
observed in the computational results. Predictions are generally of the correct magnitude
and in many cases quite accurate. The solutions allow the mechanical principles to be
studied, and can direct attention to those aspects, such as ceramic strength properties
relevant to cracking and erosion, which need to be more closely studied.

2. APPROXIMATE NUMERICAL CONSIDERATIONS

Figure 1 shows the computer simulation of the impact of a steel penetrator on a ceramic
composite target which Wilkins (3] demonstrated was close to the observations on flash
radiographic images of an experimental trial. The sequence of figure 1 can be used for
some approximate calculations which are instructive in guiding the modelling of such an
event. From the deceleration of the projectile and its mass one can calculate the force
retarding the rear of the projectile as around 100 kN which is close to the yield force of
91 kN, estimated from the projectile hardness and cross sectional area. One can conclude
reasonably therefore that the force retarding the projectile is governed by plastic yielding
of the projectile where it interacts with the ceramic, as did Wilkins [2].

In the region bounded by the cone crack, the use of a triangular velocity profile,
and estimation of the mass of ceramic and metal being accelerated, gives a resultant force
accelerating the target material of about 130 kN. The force acting on the target material
due to impact is the yield force of the projectile (about 100 kN estimated above) plus the
change in momentum according to Tate’s [16] approximate theory of penetration. From the
mass loss the eatimated force due to a change in momentum is 53 kN, giving a total force
acting on the target of 153 kN. The force resisting plate ar:celeration is the total force
acting, 153 kN, less the resultant, 130 kN, or about 23 kN. If the ceramic is assumed to
present no strength along the cracked conical boundary one can use simple plasticity
calculations to estimate from the flow stress of the aluminium that the resistance offered
by the backing is 100 kN if it came from shear at the periphery of the conical region or 33
kN if it came from dishing deformation. From these approximate computations it is
therefore possible to state with a high degree of confidence that resistance to the
penetrator is provided by inertia of the ceramic and backing bounded by the cone crack, and
by dishing deformation of the backing. Using such simple calculations it is also possible to
show that at the time when the projectile has decelerated and target material accelerated
to a common intermediate velocity, the displacement of the back of the target is only a few




millimetres, in contrast to final deflections of 15 to 25 mm observed in typical perforated
aluminium backing plates. The conclusion therefore is that the second stage of perforation
involves the penetrator and target material bounded by the cone, moving forward resisted
by bending and membrane forces in the backing till either they are slowed to zero velocity
or rupture of the backing occurs. These concepts form the basis for modelling the
perforation of ceramic composites with thin backing plates.

In figure 1 the simulation shows evidence of a decrease in ceramic thickness
with time, erosion, and some criterion for estimating the load at which the ceramic is
eroded is required. The rate of erosion will be determined by yielding and cracking beneath
the penetrator. Quasi-statically a blunt indenter forced into a ceramic causes yielding and
fracture and the pressure beneath the indenter is a measure of hardness of the ceramic.
Continued quasi-static indentation requires a pressure equal to the material hardness.
Figure 2 shows a typical Vickers indentation in an alumina tile where cracking is evident
from the corners of the indent. If ceramics are assumed to obey the same laws of plastic
flow as metals then the uniaxial flow stress can be obtained approximately from the
hardness by dividing by 2.9 [17]. Pavel et al. [15] show the reduction in velocity of an
effectively non-deforming penetrator fired through glass. The velocity reduction expected
can readily be calculated assuming the force resisting the movement of the penetrator is
some factor of the uniaxial yield stress of the glass, as estimated by dividing the hardness
by 2.9, and taking account of the fact that approximately one calibre at the back of the
glass plate is ejected with negligible resistance. Such computations are compared with the
empirical data of Pavel et al. [15] in figure 3, where it appears the resisting force is
reasonably taken as the uniaxial flow stress of the glass. For a metal perforated by a
pointed projectile it would be twice that flow stress [18), and if the flow pressure was equal
to the hardness of the ceramic then a larger deviation from experiment would be expected
in this instant. An equivalent experiment for a ceramic is not available, and typical
ceramic toughnesses are significantly higher than those of glass [19] indicating that chipping
may be expected at a somewhat higher pressure in ceramics. The appropriate pressure at
which ceramic erosion takes place is thus expected to be somewhere between the uniaxial
flow stress and the hardness, but is left open for detailed comparison of computations with
experiment for actual targets.

3. MODEL DEVELOPMENT

(a) Physical Concepts and Assumptions

The main features associated with perforation of a ceramic armour with a thin
backing plate are shown schematically in figure 4(a). In modelling the process it was
assumed that crack propagation was sufficiently fast compared to the projectile velocity
that the cone crack separates the loaded region inside the cone from an unloaded region
outside the cone. Based on the approximate calculations outlined previously the ceramic
inside the cone and the backing plate bounded by the base of tne cone are accelerated
forward with a velocity profile allowing compatibility with both the flat ended projectile
and the dishing of the backing plate. As shown in figure 4(b) the more realistic velocity
profile was slightly modified for computational efficacy in the model, the effect of this
change being negligible as the base diameter of the cone is generally far greater than the
projectile diameter. Because of the lack of knowledge on cone angle as a function of
impact parameters, it was decided to use an angle between the normal to the ceramic
surface and the cone side of 68° for all computations, at least consistent with quasi-static
observations on simple systems.



At the front of the penetrator erosion of projectile material is taking place. In
practice with brittle penetrator materials this may be in "chunks”, however as the physics
of such an attrition process is not developed it was assumed that projectile erosion, whether
by a cracking or a shearing mechanism, was governed by plastic flow of the penetrator
material. Similarly if the velocity is high enough, yielding and fracture of the front of the
ceramic will be observed. This is again considered as leading to erosion of ceramic in
contact with the projectile, governed by the normal load which the ceramic can sustain,
whether this is estimated by indentation hardness or by uniaxial flow stress as discussed in
particular cases below.

The lumped parameter model for the inertial response of the system is
represented in figure 4(c). In any time step At a mass AM_and a mass AM_ of projectile and
ceramic respectively are eroded. M_ is the oncoming progectile mass and’ M the mass of
target being accelerated. Force F, Besists forward movement of the projectile and F
resists acceleration of the target. pFC is a measure of the strength or collapse load of the
ceramic and at the interface Fj is determined by ceramic and penetrator strengths and the
rate of ceramic and penetrator erosion. After some time of interaction a number of
consequences can ensue, viz. The system can slow to zero velocity stopping the projectile
or the projectile can be completely eroded and thus stopped. The ceramic can be eroded to
zero thickness and if there is still a velocity difference between the projectile and the
backing the projectile may perforate or, if there is no residual velocity difference, the
backing may continue to bulge till either the velocity is reduced to zero or bursting of the
bulge occurs. Without complete ceramic erosion the components may come to some
constant intermediate velocity and perforation occur if the residual momentum is sufficient
to continue bulging of the backing plate and cause rupture. The model for ceramic
composite armours with thin backing is divided into two stages which treat target
acceleration using the model of figure 4(c), followed by an examination of target failure.

() Target Acceleration

The equations of motion of the system in figure 4(c) are:

Fp = -MP{IP 1)

F -F_ = - MU /at 1)
1 P PP
F -F = -mMU /at 1)
C 1 ccC
Fp - FC = ur Uy, 1@
where F is force,
M is mass,

At is the time increment,
U and U are velocity and acceleration respectively,

and subscripts P, I, C and T refer to penetrator, interface,
ceramic and target respectively as in figure 4(c).
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Each of the equations (1) relates the force on an element to the change in
momentum by either acceleration, U, or mass change, AM. The sign in equation (1b) is such
that if Fy > Fp, is negative, i.e. there is a mass loss from the penetrator. The sign in
equation (1c) is such that if Fy > Fq, AMQU is positive, i.e. there is an increase in
momentum of the ceramic material wh lpis moved out of the way. At the interface the
approach of the penetrator and target in time step At is related to the loss in mass of
penetrator and target. As a flat ended cylindrical penetrator of cross sectional area A is
being treated, we can imagine a column of penetrator and ceramic being squeezed out
giving continuity equations of the form:

M /pA = - (U -U)At 2a)
P Po P C

M /p A = (U -U)t 2(b)
C Co C T

where p is the material density.

Constitutive equations for the failure of penetrator and ceramic can be
established by requiring that for erosion of a column of material to occur, a value of flow
stress, Y, must be exceeded, whether this is governed by uniaxial yield stress, hardness or
some other measure of strength. Then for erosion to occur

Fp = Yp A, 3(a)

Foc = Yo A, 3(b)

In the course of solving the equations, erosion of both ceramic and penetrator did not
necessarily occur; erosion requires that Fy in equation (1) exceed the relevant force Fp or

Fe.

Equations (1) to (3) represent a very simplified concept of the interaction, with
gross assumpticns on the lumping of elements of material iuto composite masses. The view
of ceramic compression in a simple column is expedient and the issue of failure or erosion
stress level for the ceramic must be addressed. The contribution of radial inertia to
projectile deceleration is ignored, as it is difficult to include in the form developed by
Johnson [19], as erosion in a single front element leads to the force becoming unrealistically
large as the time step, and hence the height of that front eroding element also, becomes
small, Elimination of U_and A M~ from the equations yields a quadratic which can be
solved at each time ste;pfor the only unknown parameter, the penetrator mass loss .

At each time step all other parameters can be updated and the solution then repeated. A
relationship is required for the resistance of the target backing to bulging, F, and for an
appropriate mass distribution to give the effective mass Mq.

Woodward et al. [20] derive an equation for the work, W, to dish a plate of
thickness b and flow stress Y to a displacement h,

W - rrthT(-g—b+%h) @

and it is shown that this equation gives reasonable estimates of the work done on dished
backings from actual impacted ceramic composite targets, when compared with the work
calculated from measurements on the plate profile. In deriving equation (4) it was assumed




the dish was in the form of a cone for calculation of stretching work, a yield moment was
assumed for bending, and it was noted that the work done in tangential curvature in the
conically dished region equals the work done in radial curvature (Johnson {21]). The force
resisting dishing is thus obtained by differentiating equation (4) to give

2
Fp = b Y, (gb+h (5

and Mg represent masses of elements of ceramic and backmg travelling at
velocities U g respectwely then the total momentum of the backing is obtained by
summing thg momeﬁta of individual elements. If the velocity of target material beneath
the penetrator m(Lr then the effective mass of the target material, M, can be defined by

MU = MU +:MU ®)
T T cc BB

For the modified velocity distribution represented in figure 4(b) combined with the mass
distribution of the ceramic cone and backing in figure 4(a), the effective mass becomes
approximately

MI‘ = 11Do(pC c/2 + pBb)/12 )

where D_ is the base diameter of the cone,
¢ is the ceramic tile thickness,

and other symbols and subscript notation are as used before. In cases where ceramic
erosion occurred, the mass distribution was allowed to shrink in a geometrically similar
manner, with the velocity dropping to zero at the new outer boundary of cone intersection
with the backing., Thus D,, in equation (7) simply reduces to a new diameter proportional to
the new height of the conical section. This approximation takes some account of the
reduced target mass being accelerated and the reduced area of backing material which is
subjected to bending and stretching loads.

(c) Target Failure

Two target failure possibilities are considered in order. For the first involving
ductile instability in the backing plate, the situation after the phase of accelerating the
target material is depicted in figure 65(a) with ceramic still separating the projectile from
the backing plate and with projectile and backing moving forward at the same velocity. In
this situation bulging of the backing plate will continue with the kinetic energy of the
sy.tem being disgipated in plastic deformation of the backing, terminated by either a
reduction to zero velocity or rupture as in figure 5(b). In practice the hinge in the backing
plate may be expected to move radially and substantial elastic deflections occur,
particularly in thin plates. These aspects are, however, not easily treated. The simplified
approach used to obtain a solution considers the bulging plate as ideally plastic, with the
hinge located at the cone base and uses equation (4) to calculate the work done.
Perforation occurs if there is sufficient kinetic energy left in the projectile, ceramic and
backing after the acceleration phase to continue plate bulging to rupture. Thus a bulge
height at plate rupture is required, i.e. a failure criterion.

Backing material stress/strain properties were curve fit to an equation of the
form

10




o = A+Be™ (8)

where o and € are eff>ctive stress and strain, and A, B and n are constant curve fitting
parameters for the material. The strain at instability, € in a biaxial tension test can
then be obtained t y solving the equation

11B e?+1 - 4(2n + DBY + 11A e, - 44 = 0O 9

which is a variation on the form used by Johnson and Mellor [22] because of the different
curve fitting relationship for stress and strain, equation (8). Equation (9) is easily solved
iteratively by computer. For hydraulic bulging of circular plates the strain at instability
can be related to the displacement using the assumption that the particles in the membrane
describe circular paths. For the velocity profile of figure 4(b), the backing plate is going to
deform into the shape of a cone. For simplicity it was assumed that the cone is uniformly
tapered from the instability strain at the centre, €5 to the thickness of the original plate
at the cone diameter D Then if 6 is the angle bétween the base and side of the cone, as
in figure 5(b), constant volume deformation requires

€, = i (3 Cos 68 - 2) a0

Thus from the material characteristics, equation (8), the instability strain is calculated
using equation (9), which is substituted into equation (10} to obtain the angle through which
the sides of the cone are bent at failure. From simple geometry the displacement, h, of
the cone is calculated and this is substituted into equation (4) to calculate the dishing work.

If ceramic erosion has occurred during the target acceleration phase then the
area of the backing loaded will be reduced as discussed earlier. The assumed reduced
dimensions of the cone and loaded backing after the target acceleration stage are shown
schematically in figure 5(c), in relation to the initial dimensions. The velocity profile is
shown in figure 5(d), where it is assumed for computational ease that the velocity drops to
zero at the reduced outer hinge diameter, D. The reduced diameter combined with the
deflection angle at failure from equation (10) leads to a lower failure displacement and
hence work done in dishing failure using equation (4), than would be the case if no ceramic
erosion occurred. It was assumed that only the momentum of the projectile, the ceramic
and the backing material within the reduced dimensions acted to continue bulging. Thus
using the simpler velocity distribution of figure 5(d) the effective kinetic energy, Ek, to
equate to the work done by equation (4) is

2 .
U
1 .2 7 R T 2
E = —MU +—(pc/d+p b/3) (—) an
K 2 PP 8 C B DR”DP

where the ceramic thickness c is the reduced thickness after erosion, and Dy, is the
penetrator diameter. The effects of using reduced dimensions when accounting for the
effects of erosion will be discussed in considering sample computations.
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If the ceramic is eroded to zero thickness during target acceleration, then a
projectile of higher relative velocity bears on the backing material and an alternative
second failure criterion is needed. For failure it was considered the velocity at which the
backing was moving did not contribute to perforation and that it was the difference in
projectile/target velocity which allowed perforation. Thus the equation to determine
whether the penetrator would perforate in this case was

1 . .2 2
—-M (U -U)Y = D bY/2 a2
2 P B P P T

where Yr is the target flow stress, and subscript B represents backing. The method
assumes a simple ductile hole formation mode of failure and the equation is due to Taylor
(23, 181).

The set of equations described for the acceleration and failure stages was
written into a computer program, CEP, which treats perforation of ceramic composite
targets with thin backing plates. The program is listed in Appendix I with typical input and
output. Examples of computations performed with the method are compared with
experimental data below.

(b) Composites with Thick Backing

For cases with veryv thick backing materials it was found that the ceramic can
be completely eroded with a relatively small increase in velocity of the backing. In
addition the treatment of thick plate perforation with a dishing model is inappropriate.
Therefore a simplified model for the first phase was developed where the interaction of the
penetrator and the ceramic only are considered, with the thick backing remaining
stationary. The residual penetrator, after eroding the ceramic, then interacts with the
backing using a plugging model for finite thicknesses or a deep penetration model for
effectively semi-infinite backings. The method also has the advantage of allowing direct
checking of the ceramic erosion model against data of the typ- produced by
Rosenberg et al. [5, 6] using semi-infinite targets.

The concept of interaction with a thick target is shown in figure 6(a) and the
lumped parameter model is illustrated in figure 6(b). It is assumed that spreading of the
load by the ceramic conoid is sufficient to allow negligible yielding of the backing plate.
Then for a very large effective target mass M we obtain

U =U =0 (13)

so that the solution of equations (1) to (3) becomes trivial. There is no requirement for a
resisting force of the backing (Fq). A computer program ECS was written which solves the
simplified equations and is listed with typical input and output in Appendix II. In running
the program, depending on the input parameters the penetrator can be stopped before the
ceramic is eroded, the penetrator can be completely eroded before it perforates the
ceramic, or the ceramic itself can be eroded to zero thickness. In the latter case the
output lists the residual average projectile mass and velocity.

Using the output from ECS, the plugging program PLUG [24, 25] can be used to

see if a thick backing is perforated by plugging by & flat ended fragment, or the program
SLAM [26, 27] can be used to calculate the residual depth of penetration into a semi-infinite
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metal target. An alternative simpler approach is to use the equation

1 . 2 < 7 2
—-MU > —D Y b 14
2 PP 2 P T

to relate the residual kinetic energy (LHS) to the work done in ductile hole formation
(RHS). Here the symbols are as used before, except that b is the thickness of a finite
backing in which case the inequality determines whether penetration occurs, or for a semi
infinite target b becomes the depth of penetration using the equality. Equation (14) uses
the simpler Taylor model of ductile hole formation (23, 18] and is equivalent to equation
(12) for the thinner targets. This last approach is expected to be less accurate for the
blunt fragments exiting from the ceramic and was not generally used in this study, however
is presented as it is a useful simpler form. The most satisfying aspect of the models for
thin and thick backings is that when the same strength, YC, is used for the ceramic, it is
observed that thin target and thick target approaches tie together well at the transition
with increasing backing thickness. The most significant approximation, which prevents
extension to very high velocities is the neglect of radial inertia which has not been included
for the same reasons it has not been included in the thin backing model, i.e. a
mathematically suitable treatment is not available.

4. SELECTION OF MATERIAL STRENGTH DATA

The penetrator undergoes large strain plastic flow on impact with the ceramic, thus a figure
for ultimate tensile strength can be used in the modelling of its deformation. Because in
many cases penetrators impacting a ceramic are hard, they are materials where there is
little work hardening and within the accuracy of the model a figure for yield stress or the
approximate equivalent, Diamond Pyramid Hardness divided by 2.9 [17], should also be
satisfactory. Work hardening is not included in the model so the response of the penetrator
is determined entirely by its assumed ideal rigid/plastic resistance to plastic flow.

Diamond Pyramid Hardness data is simple to obtain.

The metallic backing material has a failure strain dependent on its work
hardening properties, and backing matrial stress strain data was therefore fitted to
equation (8) for the thin target probl ‘m. For the thick backing or semi-infinite backing
problems, curve fitting of the backing material and projectile data to appropriate forms for
thick target penetration models was also required [24-27].

The major decision involves the selection of a suitable strength level for the
ceramic representing its resistance to the penetrator or resistance to ceramic being
displaced or eroded. Quasi-statically the resistance to indentation is given by the Diamond
Pyramid Hardness, which is a stress, easily measured, figure 2, and ideal for use as a
measure of ceramic strength in the model. Alternatively it has been shown that the glass
penetration data of Pavel et al [15], figure 3, is well fitted if a flow stress determined as
hardness divided by 2.9 [17] is utilized. Initial computations using some data presented by
Mayseless et al. [4], figure 7, show an underestimate of the 12.7 mm Berkeley data, however
the computations also showed the ceramic was not eroded under these conditions 8o there
was no test of the appropriate flow stress properties of the ceramic. The comparison with
the 7.62 mm data of Wilkins given in the same work indicates an underestimate if hardness
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divided by 2.9 is used as the ceramic flow stress and an overestimate by about the same
amount if hardness is used, figure 7(a). The separation into two distinct slopes of the plots
of theoretical curves for Wilkins experiments in figure 7(a), particularly noticeable for the
lower strength level computations, is due to the onset of erosion at the higher backing
thickness, where the impact velocity to cause perforation is necessarily higher, and the
consequent shrinking of the loaded zone as depicted in figure 5(c). On the basis of this data
it appears that hardness divided by some factor between 1.0 and 2.9 is an appropriate
strength parameter for the ceramic. This would mean that cracking and ejection of
material is easy and reduces the build-up of hydrostatic constraint in the dynamic problem.

Comparison with the full range of data provided by Wilkins [1] for four ceramic
thicknesses did not, however, fit this picture exactly. To fit Wilkins data it was necessary
to increase the ceramic effective strength with thickness such that for thick plates the
appropriate strength is close to the hardness. The fit to Wilkins [1] data using hardness as
the effective ceramic strength is shown in figure 8. 1t is best described as a reasonable fit
to the data. Rather than curve fit exactly to empirical data by playing with strength
parameters, it was decided to use hardness throughout as the strength measure and
concentrate on the reliability of the computational approach and what it illustrates in the
physics of perforation of ceramic composite armours.

Several other measures of strength are possible. The most obvious is the
Hugoniot elastic limit, however this was not used as it is difficult and expensive to generate
the data, values are tabulated for only some ceramics of interest and in any case the values
are similar to the strength levels in hardness tests. The conflict of the above approach
with the glass data of Pavel et al. [15] as shown in figure 3 is at this stage attributed to the
very low fracture toughness of glass compared with the typical armour ceramics, which
would allow glass to fragment easily producing stress relief. Ceramic and glass are then
considered separate situations to be modelled.

5. COMPARISON WITH EMPIRICAL DATA

The value of the model in terms of analysing and describing the mechanisms involved in
perforation of ceramic composite targets is best appreciated by comparing computations
with existing experimental data. Such a process also allows the limitations of inbuilt
assumptions to be tested. Comparison is made with data of several types from several
sources. In all cases ceramic strength and material stress/strain data was gleaned from the
best sources available, however, in general, whilst it may be for the same material type and
condition as used in the experiments, it should best be described as typical.

The fit of computations to the results of Mayseless et al. [4] in figure 7(a) could
be considered reasonable. For the calculations on the Berkeley experiments there was no
erosion of the ceramic and variations in ceramic strength will not improve the agreement.
For all these computations the projectile erosion was part of the output and this is
compared with the experimental curve of Mayseless et al. {4] for projectile erosion in
figure 7(b). The form is correct, however there is an underestimate of about two or three
millimetres in the amount of erosion. As the model is for a flat ended penetrator, and the
experimental work involved penetrators with a pointed nose several millimetres in length
which would be readily broken, the difference between the experiment and the model is
easily understood. In fact at very low velocities the experimental data shows a step jump
in the magnitude of erosion.

The influence of ceramic erosion on predictions of the model is illustrated in the
computations of figure 8. The reason for the two distinct slopes in the calculated curves is
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the reduction in the effective loaded volume of ceramic and backing as represented in
figure 5(c); without this change in volume the graphs would continue at the initial slope. It
is noted that for each ceramic thickness the slope change in the calculated curves occurs
consistently over a narrow velocity range which is determined by the ceramic strength. In
contrast to this Wilkins’ experimental data shows a discontinuity consistently occurring at
approximately the same backing thickness for each of the ceramic thicknesses. The most
plausible explanation of this difference is that a lower stiffness in thinner ceramic tiles
allows easier bending to a strain at which fracture is initiated, reducing the effective
strength of thinner tiles. The overall agreement between the calculations and the
experiment is seen to be good when the pairs of experimental and calculated curves are
examined individually. As indicated above, one can improve the fit by selecting
appropriate ceramic strength figures which increase with tile thickness, however this then
becomes a curve fitting exercise with less meaning in the results. Certainly a valid
approach would be to use ballistic testing and the model together under conditions where
ceramic erosion is expected, in order to gauge the effective ceramic strength for those
impact conditions. Rosenberg and Yeshurun [6] pointed out that, contrary to their
expectations, some of Wilkins’ data shows no correlation between ballistic efficiency and
compressive strength. From the present model this is in fact seen to be quite reasonable as
i Wilkins’ data generally refers to conditions with backings which are thin enough that
ceramic erosion, and hence strength, is of no significance. Under such conditions the
effects of the ceramic are to induce erosion of the softer penetrator, and in the mass of
ceramic cone material which must be accelerated. The experiments of Rosenberg and
Yeshurun [6] are on semi-infinite backings. As seen in figure 8, even for the relatively low
strength AD-85 alumina, it is with the thicker backing where erosion of the ceramic occurs
that the ceramic strength limits the rate of increase in performance with backing thickness.

The effect of ceramic and backing thicknesses are again shown in figure 9 for
the data of Wilkins et al. [2] using aluminium backed boron carbide tiles. The calculations
f give the correct ordering with ceramic and backing thickness and are as close to the
experimental data as could be expected given the approximations in the model. In this case
} the model predicts no ceramic yielding, and hence no erosion, of the tiles. This is not

meant to imply that the ceramic does not fragment, just that in the time frame of the
ballistic event it is not eroded from its position ahead of the projectile. That ceramic
fragmentation and erosion are not necessarily the same is shown by figure 10 which shows
debris from the impact of an armour piercing round on an AD85 alumina target. Despite
; significant fragmentation the result of inertia and a resilient adhesive bond is to keep a
! large part of the fracture conoid in place.

Results for three different ceramics are shown in figure 11. The slight
differences predicted by the model result from density differences which determine the
mass of ceramic to be accelerated, and by the yielding of the AD85 alumina leading to a
slope change at the highest velocities. The predictions of ballistic limits are extremely
good. On this scale the model orders the ceramics incorrectly compared with the
experiments, however if areal density was used rather than tile thickness to plot the data,
{ the experimental and model results would separate into three distinct sets in the correct
] order, because of large density differences between the three materials, i.e. on the
thickness scale that Wilkins et al. [2] used to plot the data the model is not sensitive to the
differences.

The formulation of the present model uses stress/strain behaviour suitable for a

| metallic backing, hence some composite materials are presently excluded from

{ consideration. However, Mayseless et al. (4] show data for a range of backing materials
including several metals allowing the effect of backing material to be examined for some

4 cases as in figure 12. This comparison shows the calculated magnitude and ordering of

performance using the model to be correct, however for these results the model

consistently underestimates the ballistic limits.
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Wilkins (1] also presented a comparison of the performance of sharp and blunt
penetrators against AD85 alumina. The present model is for blunt penetrators and its
ballistic limit predictions are compared with Wilkins' [1) data in figure 13. Unfortunately
the computations fit the sharp penetrator data better. This comparison, whilst emphasising
the effect of nose shape, highlights the approximate nature of the present approach.

The model treatment for the situation of a thick backing can be compared with
data of Bless et al. [28) who backed alumina tiles with semi-infinite aluminium blocks. The
experimental data comprise the depth of penetration into a semi-infinite block, X,
compared with the depth when the block is covered with a ceramic tile, R, as presented in
Table 1, where the ceramic tile thickness is C. Computations of penetration into the semi-
infinite block were made with a deep penetration model (26, 27] using the initial impact
conditions to calculate X. For the case with the ceramic tile the program ECS was used
to treat the ceramic penetration and the output from these calculations used as input for
the same deep penetration model to calculate R. In a small number of cases in which a
sharp, hard penetrator was involved, a ductile hole formation model was more appropriately
used for the calculations into a semi-infinite aluminium block. In the majority of cases
Table 1 shows reasonable agreement. In most of those where agreement is poor, the
impact velocity was far in excess of that where any of the models are expected to work
(i.e.>1.56 km 87 7). In a couple of cases where computational agreement was obtained,
where the impact velocity was beyond the range of the models, it is considered a
coincidence in the present instance, and these cases are not highlighted in Table 1 as
effective computations. At least in one case (Shot 4-452) Bless et al. [28] indicate that
their "experimental” depth of penetration is only "estimated".

In making the above calculations with the program ECS for the thick backing
problem it was noted that ceramic erosion occurred whilst the penetrator was above some
critical velocity depending on the ceramic strength. Below this velocity only the
penetrator was eroded and decelerated with the calculations stopping when the penetrator
was reduced to zero mass or velocity. In those cases where the impact velocity was just
above the value for erosion of the ceramic, the deceleration during the interaction was
sufficient to reduce the projectile velocity below the critical value and ceramic erosion
stopped before the ceramic in front of the projectiie was completely removed. In all cases
where the ceramic was not perforated Table 1 shows zero residual perforation. In practice
a few millimetres of deformation is always observed due to fracture of the ceramic and
impact of the residual debris.

The effectiveness of the deep penetration model for doing the part of the
calculation involving penetration into the metal backing was checked using comparisons
with the calibration data of Bless et al. [28] in figures 14(a) and 14(b) for tantalum rods and
fragment simulating projectiles respectively. The comparisons of Table 1 and Fig. 14
indicate that the approach used to treat targets with thick backings may give good
estimates of behaviour up to impact velocities of the order of 1.5 km 8™ .

A final comparison is with data of Rosenberg and Yeshurun [5, 6] who define a
ballistic efficiency (n) of a ceramic as

*
pa P
pC hC

t
where h_ is the minimum ceramic thickness required to prevent
penetration into a thick aluminium backing,
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P;l is the penetration depth of the projectile into

bare aluminium, and

Pal and p_ are the densities of aluminium and ceramic
respectively.

The ballistic efficiency is then obtained from the slope of a graph of ps;hs) versus
pch and the results of Rosenberg and Yeshurun [5, 6] are represented as a continuous
straight line in figure 15 for AD85 alumina.

The points of intercept on the ordinate and abscissa for defining the line of
slope n may be found from the model solutions using the following procedure. As the
penetrator is sharp and hard the depth of penetration into a semi-infinite target is
estimated using the ductile hole formation model [18, 23], and as figure 15 shows this point
is where the Rosenberg and Yeshurun line for AD85 meets the ordinate. The ceramic
penetration model for the thick backing case, program ECS, is then combined with the deep
penetration model (26, 27] to calculate a curve for increasing ceramic thicknesses and thus
at a range of o _h_ values, till the curve crosses the abscissa. The crossing points on the
ordinate and abscissa are joined with a straight line to obtain the line equivalent to that of
Rosenberg and Yeshurun (5, 6). This is shown as a dashed line in figure 15 for an assumed
ADS5 alumina strength of 5.6 GPa. This is smaller than the 8.8 GPa used in earlier
calculations because under the impact conditions of velocity, penetrator and ceramic
strengths, the higher value of ceramic strength would not have allowed any penetration with
the present model. A lower value of strength was therefore chosen which allowed some
level of agreement to be achieved.

It is immediately noticed in figure 15 that the blunt penetrator model gives
much lower penetration depth than the ductile hole formation model, where no ceramic tile
is present, and this accounts for a large part of the apparent effectiveness of the
ceramic. In fact the graphs indicate the prime influence of the ceramic is in destroying
the projectile point, reducing substantially its penetrating capability, and represented by
the discrepancy of the ductile hole formation and deep penetration models on the
ordinate. It is also noted that the calculations with ceramic tiles indicate that
experimental data points should only fall on a straight line of slope n by coincidence if the
data is determined for thick ceramic tiles giving low values of py hs;; in fact this is
where the experimental data of Rosenberg and Yeshurun [5, 6] is clustered. Finally for
some of the harder ceramics tested by Rosenberg and Yeshurun (5, 6], a 12.7 mm steel
cored projectile at the velocities of their experiments would not cause ceramic erosion,
hence preventing impact on the aluminium backing according to the present model. In
practice the experimental arrangement used without any side constraint allows easy
fragmentation and ejection failure of the tile and hence easier perforation by projectile
fragments. This phenomenon would not occur in a properly restrained armour
configuration. At this stage therefore it is still questionable whether a ceramic strength
parameter suitable for one configuration is necessarily also suitable for all other ceramic
armour configurations. The three effects presented here, destruction of the projectile nose
profile, real ceramic erosion effects, and unrestrained fragmentation and ejection of the
tile are not linearly related to ceramic thickness. Thus the experimental method of
determining the ballistic efficiency, n, may be treated as a useful technique for comparing
performance, with caution in attributing a single physical meaning to the results. This
comparison also raises the question of how to treat ceramic attrition, accounting for both
the erosion effects at high velocity and the fragmentation at low velocity, in a model of the
present form.

17




. S ———

by, ity

6. DISCUSSION

There is no pretence that the models presented in the present work are to be considered an
exact simulation of the physics of impact, however the straightforward descriptions of the
physics which they embody leads to reliable and relatively simple algorithms which give
reasonable quantitative estimates of ceramic performance. In addition the predictions of
changes with variations in ceramic and backing material type and thickness, and projectile
material and dimensions are such that the models should be useful for parametric studies
and for guiding experiments and design. The concepts as presented in figures 4, 5 and 6
therefore probably embody most of the principal features of the impact event. More
accurate physical modelling with increased complexity of the algorithms can be expected to
lead to better predictions of performance. Approximations on aspects of both the physics
and the material properties are so gross that the degree of concurrence with experiment
over such a wide range could be considered truly remarkable.

A major omission is the neglect of radial inertia. Not only is the momentum of
eroded projectile material destroyed, but also it must be ejected laterally at some
velocity. The treatment used by Johnson [19] for high rate compression was not easily
adopted in the present instance as the radial inertia force becomes excessive as the
thickness of the deforming zone becomes small which, with the present model, is dependent
on the time step. The most profitable approach would appear to be to consider the eroded
projectile material as having a momentum change associated with a velocity change
from U_ to some radial ejection velocity fj%, rather than by having its momentum destroyed
as in the conventional modified Bernoulli proach [16]. At present the extra variable
would seem to make the equations insoluble. This would however maintain the same logic
as considering an increase in momentum associated with the velocity U, picked up by the
eroded ceramic, and it may be possible to relate UC and l’h in some way.

In treating the backing deformation which is largely a dishing or bulge formation
problem, the location of the hinge is a convenient conjecture. There is no doubt that in
practice both significant elastic contributions to deflection and expansion of the hinge
radially influence both the energy absorption and the effective observed ductility of the
backing material. The simple linear thickness variation and the choice of instability
criterion fortunately give overall deflections which are in accord with experience.

The deflection of the backing makes easier the radial and circumferential
cracking in the ceramic. When bending occurs the resultant lack of support due to the
bending allows ejection of fragmented ceramic from the back, and in addition ejection of
ceramic on the impact side is resisted less than the extrusion of material when the
penetrator gets deeper into the ceramic tile. For this problem there is almost a complete
lack of knowledge on material continuity and consolidation at any time. The whole
question of how ceramic fragmentation influences effective strength is unresolved. The
use of hardness in the present instance as a guide to strength is seen to be an effective
starting point.

Projectile shape is limited to the assumption of a {lat ended cylinder. This is
seen to highlight how approximate the model is in Fig. 13 as the model does not have the
gensitivity to at least plot nearer to experimental data for the blunt projectiles. That
ceramics quickly negate, by fracture, the influence of a sharp nose is highlighted by the
discussion of figure 15. Questions on projectile shape will not be resolved by one
dimensional models such as these and must rely on experiment and two and three
dimensional simulations for detailed examination.

Despite the above difficulties, and the questions of ceramic effective strength

in particular, the comparisons in this study show the models and associated computer
programs, CEP and ECS, to be effective tools for the study of ceramic armour behaviour.
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The programs should not be used for the prediction of performance, rather as a
guide in understanding the interactions. Thus the program for thick backings, ECS, may, by
simulating experiments, enable studies of the effective pressure at which erosion occurs and
how this is influenced by material and confinement.

7. CONCLUSIONS

This work has presented two models for the perforation of ceramic composite armours, one
for the perforation of targets with thin backing plates, which deform by bending away under
the influence of the ceramic fracture conoid to fail by a biaxial tensile fracture, and the
other for targets with a thick backing, where the backing remains undeformed whilst the
ceramic erodes and is then perforated by the residual projectile fragment. The details of
ceramic fragmentation are avoided in the model which treats the dynamics of movement of
blocks of material with macroscopic failure criteria for both ceramic and backing.
Comparisons of computations with empirical data demonstrate a good correlation, and the
model can be used for parametric studies, to assist with the analysis of experimental data
and for design. Ceramic hardness is used as a strength parameter, however the
consideration of ceramic strength appropriate to ballistic impact is considered a major
aspect for further investigation.
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Table 1 Comparison of Calculated Penetration Depths into Aluminium Compared to
Experiments of Bless et al. [15]1

s.N.* “0_1 C (mm) Projectile X (mm) R (um)
(km 8 ) EXp. Calculation BXp. Calculation
4-324 2.55 ¢ 9.3 8 g Ta rod 93 77 96 65
4-325 1.96 1 9.3 8 g Ta rod 74 56 84 46
6-177 1.35 9.3 8 g Ta rod 48 36 36 33
6-778 0.61 6.3 8 g Ta rod 11 9 4.8 0
6-967 0.70 9.19 8 g Ta rod, 16 12.7 5.3 0
Sharp

6-958 1.66 12.7 12.7 FSP 33 27 14.8 18
6-969 1.01 9.14 12.7 FSP 17.5 1 4.8 (4]
4-452 2.30 ¢ 9.14 7.62 APM2 91 45 (429) 64 41
9-843 0.84 9.14 7.62 APM2 48 10.8 (52) P '}
10-452 0.78 6.35 7.62 APM2 48 8.6 (49) ) U '}
9-1117 0.94 9.14 7.62 APM2 51 11.9 (72) 1 0
6-832 0.88 9.14 7.62 W2 APM2 115 19 (126) 4 11.5
6-966 1.64 9.14 7.62 APM2 73 29 (218) 30 24
4-579 2,70 ! 9.14 6061-T6 APM2 51.5 57.5 31.3 56
4-596 2.80 ¢ 9.14 7075-T6 APM2 53 61 39.4 60
6-1122 1.47 9.14 7075-T6 APM2 31 17 3 0

S.N, = Shot No, U° = impact velocity, C = ceramic thickness,
X = depth into aluminium with no ceramic cover,
R = depth into aluminium with ceramic tile,
PSP = Pragment Simulating Projectile.

Calculations of penetration depth were generally performed with a deep penetration model
[26, 27) except for cases indicated by ( ) because a hard sharp penetrator is concerned
and in these cases the model of Taylor for ductile hole formation was used, i.e. equation
(14). Those results which are underlined are considered effec.ive calculations. Some
reasone for poor agreement in other cases are discussed in the text. Shots No. 4-324
and 4-325 involved the use of a cover plate over the ceramic, and this was accounted for
approximately in the computations.

t Shots thus indicated were at impact velocities far above that at which any of the models are
expected to be valid.
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APPENDIX 1

CEP - COMPUTER PROGRAM FOR THIN BACKING CERAMIC
COMPOSITE TARGETS

The computer program CEP solves the problem of perforation of targets consisting of a
ceramic tile backed by a thin ductile metal backing material. The program calls on an
input file CIP.DAT and it increments projectile velocity from the initial value until a
condition is found at which the ceramic is just perforated. At this velocity the program
stops and creates an output file, COP.DAT, containing a number of the more useful
calculated parameters. A typical input is listed at Table Al.1 and a typical output at
Table A1.2, followed by a listing of the program.

Table A1.1 Typical Input CIP.DAT

Parameter Symbol in Program Units Typical Value
Initial Velocity Estimate VPO ms™1 400,
Penetrator Yield Strength YP MPa 2300.
Penetrator Density ROP g cm™3 7.85
Penetrator Mass ASP g 30.
Penetrator Diameter DP mm 12.7
Penetrator Height HP mm 30.17
Ceramic Thickness TG mm 6.35
Ceramic Density ROC g cm™3 3.4
Ceramic Vickers Hardness HARC GPa 8.8
Backing Thickness TB mm 14.
Backing Density ROB g cm™3 2.7
Backing Strength, A eq.(8) AB MPa 280.
Backing Strength, B eq.(8) BB MPa 268.
Backing Work Hardening

Exponent, n eq.(8) ENB - .513
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Table A1.2 Typical Output COP.DAT
RKE WKS WKB TOTKE RW RET
651.3 717.8 165.6 1371.4 1365.2 6.2
DIKE CwD VPO
0. 1669. 565.
CONE ANGLE R RC TCN
22.000 0.0221 0.0221 0.006350
VPN VIN PH RASP
237.6 237.6 0.02321 0.023076
STN T PHID DISP DIST TIME
0.514498 0.008369 30.01 0.00908 0.00431 .000027781
SYMBOL PARAMETER
RKE Residual kinetic energy of penetrator at end of Stage 1.
WKS Work done in stretching backing Stage I.
WKB Work done in bending backing Stage 1.
TOTKE Target plus projectile residual kinetic energy at end of Stage L.
RW Residual work to fail by dishing in Stage 1.
RET RW - TOTKE, if-ve dishing failure
DIKE Difference in KE represented by differential projectile/target
velocities at end of Stage I.
CWD Work done for backing to fail by perforation.
VPO Velocity of projectile to just defeat target.
CONE ANGLE  Fracture conoid angle in ceramic.
R Radius of dishing region defined by original conoid.
RC Reduced dishing radius if ceramic erosion has occurred.
TCN Ceramic thickness.
VPN Velocity of Penetrator at start of Stage II.
VTN Velocity of target elements at start of Stage II.
PH Penetrator height.
RASP Penetrator mass.
STN Target failure strain by biaxial instability.
TI Target thickness at instability.
PHID Angle of dishing in degrees.
DISP Dishing displacement for failure,
DIST Actual final dishing displacement at end of Stage I.
TIME Time for Stage ], stage.
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CEP.FOR

PROGRAM TO CALCULATE BALLISTIC LIMIT AND ENERGY CONSUMPTION
IN SMALL CALIBRE AP DEFEAT OF CERAMIC FACED COMPOSITES
WRITTEN BY RAYMOND L WOODWARD,MATERIALS RESEARCH
LABORATORY,MARIBYRNONG,1989

C
C
C
C
C
C

OPEN(UNIT=1,FILE="CIP.DAT’,STATUS="OLD")
OPEN(UNIT=2,FILE="COP.DAT,STATUS="NEW"

21 FORMAT(F8.1/F8.1/F10.4/F10.4/F10.4/F10.3/F10.4/
1F8.3/F6.2/F10.3/F8.4/F10.1/F10.1/F8.3)

41 FORMAT(T11, ’RKE'T24, WKS'T38, WKB'T48, TOTKE'T65,'R W'T75,'RET")

42 FORMAT(4X,F10.1,4X,F10.1,4X,F10.1,2X,F10.1,4X,F8.1,4X,F6.1)

43 FORMAT(4X,F10.0,4X,F10.0,4X,F10.0)

44 FORMAT(T10, DIKE'T25, ’CWD'T38,'VPO"

45 FORMAT(T5 CONE ANGLE'T23,'R'T35,’RC’T47," TCN")

46 FORMAT(8X,F6.3,4X,F8.4,4X,F8.4,4X,F8.6)

47 FORMAT(TS, VPN'T18, VTN'T30, PH'T42,'RASP")

1 48 FORMAT(X,F8.1,2X,F8.1,4X,F8.5,4X,F10.6)

49 FORMAT(T6,'STN'T16"TI'T24, PHID'T36, DISP'T50, DIST'T63, TIME"

} 50 FORMAT(2X,F8.6,2X,F8.6,2X,F6.2,6X,F8.5,6X,F8.5,4X,F10.9)

READ(,21)VPO,YP,ROP,ASP,DP,HP,TC,ROC,HARC,TB,ROB,AB,BB,ENB

YP-YP*1000000.

r ROP=ROP+*1000.

ASPO=ASP*.001

DP-DP+.001

HPO=HP+.001

TC=TC*.001

ROC=ROC*1000.

‘ HARC=HARC*1000000000.

FC=.7854*HARC*(DP**2)

TB=TB*.001

ROB-ROB*1000.

{ AB=AB*1000000.

F BB=BB*1000000.
+ ASF=ASP/HP
DT-.00000001
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] CALCULATE BACKING INSTABILITY STRAIN

STN0=0.359
FNO=11*BB*(STNO**(ENB+1))-(8*ENB+4)*BB*(STN0**ENB)
1+(11*AB*STNO)-4*AB
DO 33 N=1,10000
STN1=STN0+.001
FN1=11*BB*(STN1**(ENB+1))(8*ENB+4)*BB*(STN1#*ENB)
2+(11*AB*STN1)-4*AB
IF(FN1.EQ.0)GO TO 31
SGN=FN1/FNO
IF(SGN.LT.0)GO TO 30
STNO=STN1
FNO=FN1

33 CONTINUE

30 STN=(STNO+STN1)*0.5
GO TO 32

31 STN=STN1

32 CONTINUE

C
C BEGIN STEPPING VELOCITY,TILL V50 FOUND
C
DO 101 K=1,500
VP=VPO
VPO=VPO+5.
T=0
PKE=0.5¢ASP*(VP**2)
TCN=TC
HP=-HPO
ASP=ASPO
C
C CONE ANGLE/RADIUS OF DISHED REGION/MASS CONE/CONSTANTS
C
CA=.383972
CAD=CA*57.296
y R=(TC/TAN(CA)+DP/2)

ASCB=3.14159*((TC*ROC/2)X(TB*ROB))*(R#*+2)/3
F1=YP*0.7854*(DP**2)
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FCF=DT*(FC-F1)
F2=F1+(VP**2)*ASF

]

THICKNESS AT INSTABILITY/BEND ANGLE

TI=TB/EXP(STN)
PHI=ACOS(.66666667+TI/(3*TB))
PHID=PHI*57.296
DISPO=(R-DP/2)*TAN(PHD

[ YSB=AB+BB*(STN**ENB)/(ENB+1)
C1=ROC/ROP

A=-C1/(ASF+*DD)

C3=ASF*DT=*C1

o Q

TARGET ACCELERATION/PROJ. EROSION AND DECELERATION

DIST=0

} VT=0

T F3=2.0944*YSB*(TB**2)

DO72 1=1,50000

DISP=DISPO

T=T+DT

DVP=F1*DT/ASP

[ IF(F2.GT.FC)GO TO 14
DVT=(F2-F3)*DT/ASCB
GO TO 15

14 DVT=(FC-F3)*DT/ASCB

15  VPN=VP-DVP
VTN=VT+DVT
DIST=DIST+HVTN+VT)*DT/2
IF(F2.LT.FC)GO TO 18
B=—(1+2*C1)*(VP+VPN)/2+(VT+VTN)*C1/2
C=-C3*(VP-VT+VPN-VTN)*(VP+VPN)/4-FCF

L DAS=-B/(2-A)<SQRT(B**2-4*A*(C))/(2*A)

{ GO TO 19

18  DAS=~«(VPN+VP-VT-VTN)*DT*ASF/2

19 DTC=((VPN+VP)*DT/2)+DAS/ASF~AVT+VTN)*DT/2
TCN=TCN-DTC
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RC=TCN/TAN(CA)+DP/2
ASCB=1.0473*((TCN*ROC/2)+(TB*ROB))*(RC**2)
DISP=(RC-DP/2)*TAN(PHD

91 ASP=ASP+DAS
F3=(2.0944*(TB**2)+3.14159*TB+*DIST)*YSB
F2=F1-DAS*VPN/DT
IF(TCN.LE.0)GO TO 88
IF(DIST.GE.DISP)GO TO 88
IF(VIN.GE.VPN)GO TO 88
VP=VPN
VT=VTN

72 CONTINUE

88 CONTINUE

C CALC. OF ENERGIES AND OUTPUT

9!

54 PH-ASP/ASF

} DIKE=0.5* ASP*((VPN-VTN)*#2)

} CWD=1.5708+(DP**2)*TB*(AB+BB+(STN**ENB))

RKE-0.5%ASP*(VPN**2)

| WKS=2.0944+(TB#+2)*DIST*YSB
WKB=1.5707+TB+(DIST+*2)*YSB
TKE=3.14159¢(RC#*4)*(VTN*#2)* (TCN*ROC/20)}«(TB*ROB/12))
1/(RC-DP/2)++2)
TOTKE-RKE+TKE
RW=3.14169+TB* YSB*(.6667+ TB+(DISP-DIST)+0.5+(DISP**2)
1-(DIST**2))
RET-RW-TOTKE

C  FAILURE BY DISHING IN STAGE 2

‘ IF(RET.LT.0)GO TO 102

! C  FAILURE BY PERFORATION
IF(DIKE.GT.CWD)GO TO 102

C  FAILURE BY DISHING IN STAGE 1
IF(DIST.GE.DISP)GO TO 102

101 CONTINUE

102 WRITE(2,41)
WRITE(2,42)RKE, WKS, WKB, TOTKE,RW,RET
WRITE(2,44)

‘_:*‘-ﬁ—‘—‘
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WRITE(2,43)DIKE,CWD,VPO
WRITE(2,45)
WRITE(2,46)CAD,R,RC,TCN
WRITE(2,47)
WRITE(2,48)VPN, VTN, PH,ASP
WRITE(2,49)
WRITE(Z2,50)STN, TL,PHID, DISP,DIST, T
STOP

END
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APPENDIX 2

ECS - PROGRAM FOR CERAMIC PERFORATION WHEN BACKED

The computer program ECS solves the problem of perforation of a ceramic tile when it is
supported by a very thick backing which shows negligible deflection until the ceramic
block is completely eroded. The program calls on the input file EIS.DAT and produces

BY A THICK PLATE

an output file EOS.DAT showing residual projectile mass and velocity after ceramic
erosion. The latter data can then be fed into an appropriate model to examine the

perforation of the backing. A typical input is listed at Table A2.1 and the corresponding

typical output at Table A2.2, followed by a listing of the program.

Table A2.1 Typical Input EIS.DAT
Parameter Symbol in Program Units Typical Value
Penetrator Velocity vP ms 1 1200.
Penetrator Yield Stress YP MPa 2500.
Penetrator Density ROP g cm™3 7.85
Penetrator Mass ASP g 23.1
Penetrator Diameter DP mm 10.8
Ceramic Thickness TC mm 6.
Ceramic Density ROC g cm™3 3.4
Ceramic Vickers Hardness HARC GPa 8.8
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Table A2.2  Typical Output EOS.DAT

0.00555 1190.0 0.02256 0.00000100
0.00511 1179.7 0.02203 0.00000200
0.00469 1169.2 0.02149 0.00000300
0.00428 1158.4 0.02095 0.00000400
0.00388 1147.3 0.02040 0.00000500
0.00350 1135.9 0.01986 0.00000600
0.00313 1124.2 0.01931 0.00000700
0.00278 1112.2 0.01876 0.00000800
0.00244 1099.8 0.01821 0.00000900
0.00212 1087.0 0.01765 0.00001000
0.00182 1073.9 0.01709 0.00001100
0.00154 1060.2 0.01652 0.00001200
0.00127 1046.1 0.01596 0.00001300
0.00103 1031.5 0.01538 0.00001400
0.00081 1016.3 0.01480 0.00001500
0.00062 1000.6 0.01422 0.00001600
0.00044 984.1 0.01363 0.00001700
0.00030 966.9 0.01303 0.00001800
0.00019 948.9 0.01242 0.00001900
0.00010 930.0 0.01181 0.00002000
0.00006 910.1 0.01118 0.00002100
0.00005 889.0 0.01054 0.00002200
0.00005 866.6 0.00991 0.00002300
0.00005 842.8 0.00929 0.00002400
0.00005 817.3 0.00870 0.00002500
1 f 0.00005 790.0 0.00812 0.00002600
0.00005 760.8 0.00756 0.00002700
} 0.00005 729.4 0.00702 0.00002800
] 0.00005 695.5 0.00651 0.00002900
0.00005 659.0 0.00602 0.00003000
0.00005 619.4 0.00556 0.00003100
0.00005 576.6 0.00513 0.00003200
] 0.00005 530.2 0.00474 0.00003300
! 0.00005 479.8 0.00437 0.00003400
0.00005 425.4 0.00405 0.00003500
0.00005 366.6 0.00376 0.00003600
0.00005 303.7 0.00352 0.00003700
0.00005 236.7 0.00333 0.00003800
0.00005 166.2 0.00318 0.00003900
0.00005 93.0 0.00309 0.00004000
0.00005 18.3 0.00305 0.00004100
J TCN VPN ASP T
] 0.00005 -0.5 0.00305 0.00004125
Symbol Parameter
TCN Ceramic Thickness (m)
| VPN Penetrator Velocity (ms™h
! ASP Penetrator Mass (kg)
+’ T Time (S)
In each case the value under the symbol is the final value. In the above example
ceramic erosion had stopped after 2 microseconds because the penetrator velocity was
reduced below the value at which the ceramic strength was exceeded. Projectile erosion
continued till the penetrator velocity was reduced to zero after 42.5 microseconds.
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ECS

PROGRAM FOR CALCULATING CERAMIC/PROJ. EROSION WHEN BONDED
TO A SEMI-INFINITE PLATE

WRITTEN BY RAYMOND L WOODWARD,MATERIALS RESEARCH
LABORATORY,MARIBYRNONG,1989
OPEN(UNIT=1,FILE="EIS.DAT’,STATUS="OLD"
OPEN(UNIT=2,FILE="EOS.DAT’,STATUS="NEW")
FORMAT(F8.1/F8.1/F10.4/F10.4/F10.4/F10.4/F8.3/F6.2)
FORMAT(TS,"TCN™T18,"VPN'T30,’ASP'T42,'T")
FORMAT(4X,F8.5,2X,F8.1,4X,F9.5,4X ,F10.8)
READQ,21)VP,YP,ROP,ASP,DP,TC,ROC,HARC
YP=YP=*1000000.

ROP=ROP*1000.

ASP=ASP=*.001

DP=DP=*.001

TC=TC=*.001

TCN=TC

ROC=ROC=*1000.

HARC=HARC*1000000000.

YC=HARC/1.0

ASF=,7854*ROP*(DP*+2)
F1-YP=*.7854=(DP**2)

T=0

DT=.00000001

F3=YC=*.7854*(DP**2)

FCF=DT=*(F3-F1)

C1=ROC/ROP

A=0-C1/(ASF*DT)

C3=ASF*DT=+C1

F2=F1+(VP**2)*ASF

DO 72 1=1,50000

T=T+DT

DVP=F1*DT/ASP

VPN=VP-DVP

IF(F2.LT.F3)GO TO 18
B=0«(VPN+VP)*(1+2+C1)/2
C=0-C3*((VPN+VP)**2)/4-FCF
DAS=0-B/(2*A)(SQRT(B**2-4xA*())/(2*A)
GOTO 19

DAS=ASF*(VPN+VP)*DT/2
DTC=((VPN+VP)*DT/2)+DAS/ASF
TCN=TCN-DTC

ASP=ASP+DAS

VP=VPN

F2=F1-DAS*VPN/DT

DO 83 N=1,500

INC=N+*100

IFd-INC)84,79,83

CONTINUE

WRITE(2,48)TCN,VPN,ASP,T

IF(ASP.LE.0)GO TO 88

IF(VPN.LE.0)GO TO 88

IF(TCN.LE.0)GO TO 88

CONTINUE

WRITE(2,47)

WRITE(2,48)TCN,VPN,ASP,T

STOP

END
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Figure 1 Computer simulation of the early stages of perforation of an 8.6 mm ceramic

} tile backed with 6.4 mm 6061-T6 aluminium by a projectile impacting at
853 ms L. The projectile erosion and formaiion of a fracture conoid in the

ceramic are evident. After Wilkins [3].

Figure 2 Typical Vickers diamond pyramid indentation into a8 ceramic.
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by a thin ductile plate. (a) Schematic of the eroding penetrator, eroding
ceramic material, cone crack and positions of the hinges for dishing of the
backing. (b) Assumed velocity distribution in the ceramic and backing
during the first stage of acceleration. The more realistic distribution has a
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(c) Lumped mass model, where the masses M and connecting forces F are
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